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1 Introduction

Undirected Hamiltonian Circuit
Input: A graph G
Goal: Yes if G has a cycle which includes each vertex exactly once.

Undirected Hamiltonian Circuit is a graph theory problem involving finding a
cycle in a graph that includes each vertex exactly once. It is named after William
Rowan Hamilton, a 19th century mathematician who created the Icosian game.
In the Icosian game, the goal is to find a Hamiltonian cycle on a dodecahedron.
It’s also one of the first problems to be proven as NP-complete, as done by
Richard Karp [3].

Undirected Hamiltonian Circuit has many applications in a wide variety of
fields. These include in routing problems, where we can represent nodes in the
graph as locations on a map, such as cities, and the edges are weighted with the
physical distance between those locations. In this case, the problem becomes
the Traveling Salesperson problem, where we are trying to find a Hamiltonian
Circuit of minimum weight on a weighted graph [4]. For example, think of a
UPS truck that starts at the UPS facility and needs to deliver packages to a
bunch of houses, and then return to the facility. It is of importance to the driver
to visit the houses in the least amount of time possible, which is why a routing
algorithm like TSP is so valuable.

UHC and TSP also have applications in DNA sequencing [1]. In this prob-
lems, we can represent each node as a subsequence of DNA, and a Hamiltonian
Circuit represents a full sequence. Sequences are often read in short chunks, so
being able to reproduce the original sequence from those chunks is an important
problem.

For a famous special case of UHC, see the knight’s tour problem [9]. In
this problem, the initial setup is a chess board with a knight placed somewhere
on it. The goal is to find a "tour”, or a set of moves that has the knight
visit every single square on the board exactly one time. Although TSP has no
polynomial time optimal solution, the knight’s tour problem has a linear-time
optimal solution that runs in time relative to the size of the board [5].



2 NP Complete Proof

To prove that Undirected Hamiltonian Circuit is NP Complete, we must do two
things: prove that it is in NP, and prove that it is NP hard. To prove that it is
in NP, we simply need to prove that any solution to the problem can be checked
in polynomial time. To prove that it is NP hard, we can reduce another NP
complete problem to it.

2.1 Proving UHC is in NP

Assume the solution to the problem comes in the form of an ordered list of
vertices, representative of the cycle. First, we must make sure that the solution
is actually a cycle, which is trivially done in polynomial time by checking that
the first and last vertex in the list are the same. Next, for every pair of adjacent
vertices, we must check that there exists an edge in the graph for said vertices.
This can be done in polynomial time by iterating over the list in pairs and
checking if an edge with each pair exists in the set of all edges. Finally, we must
also check that the list includes every vertex, and includes every vertex exactly
once. We can also do this in polynomial time while iterating over the list of
vertices by adding new vertices to a set, and if we encounter a vertex that is
already in the set, returning false.

2.2 Proving UHC is NP Hard

To prove that UHC is NP Hard, we can reduce Directed Hamiltonian Circuit to
it. There also exists a very elegant reduction of 3SAT to Directed Hamiltonian
Circuit, which T won’t cover in full detail, but will show a figure of and give
some intuition of.

2.2.1 3SAT to Directed Hamiltonian Circuit

For every boolean variable, we create a path of 3m + 1 nodes where m is the
number of clauses in the boolean formula. Set the direction of the edges in the
path to face left if the variable was assigned as false, and right if it was signed
as true. We connect the end nodes of each path to the end nodes of the next
path, directed downward. We also create a start node and an end node. The
start node is connected to the end nodes of the first path, and the end node is
connected to the end nodes of the last path. The end node is also connected
back to the start node.

We also create nodes for each clause. For each variable in the clause (of
up to j variables), we add an outgoing edge to the 35 + 1 node in the path of
that variable, and an incoming edge from the 3j node in the path. For each
complement variable, do the same thing but flip the direction of the edges.

Given this setup, if a Directed Hamiltonian Circuit exists in the graph, then
the assignment of the variables satisfies the formula.
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Figure 1: 3 SAT to DHC [6]

2.2.2 Directed Hamiltonian Circuit to Undirected Hamiltonian Cir-
cuit

The reduction of DHC to UHC is a good deal simpler than 3SAT to UHC. Since
this is the primary reduction of the paper, here is its formal definition.

We define a pair of functions f and h as follows. Given an instance I = H
of DHC (where H is a directed graph), f will return the instance f(I) = G of
UHC. f works as follows: For every vertex v in H, replace v with 3 new vertices:
Vin, U, and vy¢. For every directed edge e in H from vertex u to vertex v, add
an edge between u,,: and v;,. This is demonstrated in the figure below.

Figure 2: DHC to UHC

The intuition behind this is that we are basically forcing a direction for
our circuit to take if it wants to visit every vertex in the graph. Figure 3 is
an example of a directed graph without a Hamiltonian cycle, and how that
property gets maintained in our UHC instance. As you can see, v; and vy
cannot be accessed without doubling back over them, which maintains the lack



Figure 3: DHC to UHC 2

of Hamiltonian Cycle of the original graph.

Given a solution T to the UHC instance f(I), h will return the solution
h(T) = S to DHC. h is simple enough: if f(I) returns True (as in, there is a
Hamiltonian cycle), h returns True, and False otherwise. If there’s a Hamilto-
nian Cycle in one graph, there will be a Hamiltonian cycle in the other.

3 What can be done?

3.1 Approximation Algorithms

Since UHC returns a Yes or No answer, there are no true approximation algo-
rithms for it. However, if we convert the problem into an optimization prob-
lem, such as finding the shortest length Hamiltonian circuit, our options for
approximation algorithms expand greatly. To be a little more formal, what I
am referring to is known as the Traveling Salesperson Problem. It is formally
defined as follows:

Traveling Salesperson Problem
Input: A weighted graph G
Goal: A Hamiltonian circuit with minimum total weight

The best approximation algorithm for TSP is Christofides’ Algorithm [2]. Tt
is a 3/2 approximation; however, it has two conditions:

1. The input graph has to be complete.

2. All the edges of the input graph have to abide by the triangle inequality,
e, w(zy) + w(yz) > w(xz).

These may seem like strict conditions, but they are reasonable for problems
taking place in Euclidean space. This is because real world physical distance
naturally abides by the triangle inequality, and generally speaking there is at
least one way to get between any two points in the real world.

Christofides’ Algorithm works as follows [7]:

1. Create a minimum spanning tree 7" of G.



2. Let O be the set of vertices with odd degree in T'.

3. Find a minimum-weight perfect matching M in the subgraph induced in
G by O.

4. Combine the edges of M and T to form a connected multigraph H in
which each vertex has even degree.

5. Form an Eulerian circuit in H.

6. Make the circuit found in the previous step into a Hamiltonian circuit by
skipping repeated vertices (shortcutting).

This algorithm has an O(n?) complexity, which is mainly because the current
best algorithm for finding a minimum-weight perfect matching is O(n?).

The intuition behind the algorithm is that we want to build an Eulerian
graph using a Minimum Spanning Tree as its foundation. This is because the
Minimum Spanning Tree is a subset of the edges connecting all the vertices
together with minimum weight, which would be an optimal solution if it was a
circuit. The MST is where we get 2/2 of our 3/2 approximation.

Using the MST, we build an Eulerian graph, which only has the condition
that every vertex must have even degree. If we can build such a graph, we are
guaranteed to find an Eulerian circuit. An Eulerian circuit is a circuit that visits
every edge exactly once, instead of every vertex.

To satisfy this condition, we make use of a very useful lemma called the
handshaking lemma [8], which states that in every finite undirected graph, the
number of vertices that touch an odd number of edges is even. By finding all
the odd vertices and creating a minimum-weight perfect matching between them
(which we can do since there are an even number of them), we eliminate all odd
degree vertices. The minimum-weight perfect matching contributes another 1/2
to our approximation ratio.

With our Eulerian graph in hand, we can find an Eulerian circuit, and turn it
into a Hamiltonian circuit by following the vertices in order and taking shortcuts
to skip vertices we've already seen. We can do this because the graph is complete
(meaning there is an edge between any two vertices), and we can also do so
without affecting our approximation ratio because we know the weight of the
shortcut edge is guaranteed to be less than or equal to the sum of the original
edges from the Eulerian circuit thanks to the triangle inequality. For example,
imagine our Eulerian circuit has the edges (0,1), (1,0), (0,4), and (4,0). Our
Hamiltonian circuit will look like 0,1,4,0. We are replacing (1,0) and (0,4) with
a shortcut edge, (1,4).
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