From Resources to Victory: Heuristic-Driven Reinforcement
Learning in Catan

Shayan Daijavad, Samuel Kaplan, Jacob Kelleran, Aiden Smith and Tymon Vu
Cal Poly,
San Luis Obispo, United States
{sdaijava, sfkaplan, jckeller, asmit332, tvu38} @calpoly.edu

Abstract—For our project, we worked on a Catan simulation
that allows for different types of agents to compete against each
other. We extended work done by one of our team members
(Shayan) in CSC 480. We completely redid the codebase, added
new game mechanics like Longest Road, and added the ability
to choose different types of agents to play the game. We added a
way to vectorize the game state for deep learning purposes. We
redid the original codebase’s heuristic agent and added a random
action agent and a reinforcement learning agent. We also added
the ability for humans to play the game.

I. INTRODUCTION

The problem we are trying to solve is coming up with an
agent that is capable of effectively playing Settlers of Catan.

Catan is a complex game with many rules, but it lends itself
nicely to programmatic representations, as its board can be
represented using a graph data structure, and game and player
state can be nicely represented using object oriented design.

There are many effective strategies in Catan, and it is ripe
for testing different kinds of artificial intelligence techniques.
Moreover, thanks to Catan’s unique multiplayer setting, we
can gain insight into the performance of these techniques
by comparing them against each other and against human
players. Developing dynamic systems to adapt to changes in
environment based on multiple agents actions maintains a high
value as more people adopt and use Al models in day to day
life.

This project relates to the class objectives because it pushed
us to look into prior work done in the field (there is a lot),
and come up with a novel way to approach this problem and
refine our artificial intelligence knowledge and capabilities. We
learned a lot about encoding game state, and using those same
encodings for deep learning.

Our contribution is providing a robust codebase with a
fully featured representation of Catan. Our codebase allows
developers to easily add new types of agents and compare
them to previously created ones, including a random action
agent, a heuristic agent, and a reinforcement learning agent.
We also provide a way to easily encode Catan’s game state into
a vector format for agents that use deep learning techniques.

II. GAME SPECIFICATION

Catan, also known as The Settlers of Catan, is a strategy-
based resource-management board game that was designed by
Klaus Teuber in 1995. The game is designed to be played by
2-4 players, where the game board is composed of hexagonal
tiles, each with a number from 2-12, that represent different

terrains, with each producing a different resource. There are
5 main resources/terrains in the game: wood, brick, sheep,
wheat, and ore. These resources are used to help players build
settlements, cities, and roads to further expand to more terrain
tiles and produce more resources, which is fundamental to the
game’s economy. The board representation we used is shown
in Figure 1.

Each player starts the game with two settlements and two
roads and strategically chooses where to place each settlement
along with a connected road at the intersections of terrain tiles.
Once all players have placed their starting settlements and
roads, the game begins with the first player rolling two six-
sided dice. Any settlement adjacent to a tile with the matching
rolled number grants its owner the resource produced by that
terrain type. If a player rolls a 7 (which can never be on
a tile), they get the chance to move the “robber”, an extra
game piece, to any tile on the board and steal from any player
settling on that tile. Any tile that has the “robber” on it can not
produce any resources from it. Play proceeds with the player
that rolled building based on their resources or requesting to
trade with the bank, harbors they settled on, or other players
for any resources they might need. The first player that gets to
10 victory points will be crowned as the winner of the game,
where settlements (initial houses) are worth 1 point and cities
(upgraded houses) are worth 2 points.

2.1 Wood|

2:1 Wood!

Fig. 1. Sample Catan Board (Our implementation)

Outside of the main expansion and building aspect of the
game, there are other outside factors where players can win
extra victory points, which include development cards and win



conditions (longest road and largest army). Longest road and
largest army are both conditions that are met and rewards a
player an additional 2 victory points if they have the longest
connected road network on the board (starting at 5) or if they
have the most “knight” development cards played (starting
at 3). These win conditions can be overtaken and stolen by
any player. Development cards, on the other hand, act similar
to “Chance cards” in Monopoly with only positive benefits,
where players draw from a face down deck randomly and get
an extra action they can use in any future turn to help them out.
This card is hidden to all players, except the one that drew,
and revealed when they want to play the action. There are
five unique development cards in vanilla Catan, which include
victory points, road building, knights, monopoly, and year of
plenty.

III. RELATED WORK

There have been numerous forays into developing artificially
intelligent Catan bots over the years, with varying levels of
success. In Michael Pfeiffer’s 2004 paper [1], he explored
using a reinforcement learning approach to this topic, training
a game with a hierarchical learning structure. This worked
by having an overarching policy network provide rewards
for winning the game, and alternative networks for lower
level actions that made up the vast majority of the gameplay.
Although this approach served to create a model that made
reasonable moves, the results ended up not being able to
best human players, obtaining 3-7 reward points based on
different learning models. The heuristic model they developed
was actually the most successful, which showed that there was
not a lot of progress with the reinforcement learning approach.

Another paper that explored a reinforcement learning
method in Catan was done by Brahim D. and Tristan C. in
“Deep Catan” [2]. Here, they used a combination of Monte
Carlo Tree Search (MCTS) and reinforcement learning to gain
better results. This process is reminiscent of the AlphaGo
paper, in which they had their bot able to explore multiple
branching pathways, while still having the benefit of thousands
of iterations of games and turns. The specific MCTS algorithm
they used was Upper Confidence bounds applied to Trees
(UCT). They labelled this as the UCTnet model - which
signifies a combination of network training and MCTS, and
found that it outperformed the pure UCT model. However,
they did not publish any results against human opponents, and
completely sidestepped any trading as part of the game.

An inspiration for our game playing environment was a
Catan Simulator called ”Catanatron” [3]. This simulation had
a variety of different agents - plus the ability for humans to
play and interact with the environment. We took inspiration
from this in our game simulation, including multiple different
agent types as well as the capabilities for humans to play
alongside the bots. We initially discussed the idea of using
this environment instead, but found that it was ill-tailored to
our specific needs and opted to create our own.

Finally, for the development of our heuristic we looked into
past research of optimal moves and strategies. One paper we

found that went quite in depth with this was ”Settlers of Catan
Analysis” by Peter Keep [4], which discussed optimal resource
combinations, settlement placements, and win conditions like
longest road and largest army. We tried to take these metrics
and strategies into account for our heuristic agent.

IV. IMPLEMENTATION

One of our team members (Shayan) implemented a Catan
simulation in his CSC 480 group project, and had heuristic-
based agents play the game. We extended his implementation
for 570,adding additional game features, reworking the code-
base, adding human players, encoding the game state into a
vector format, and finally attempting a reinforcement learning
agent.

A. Additional Game Features

In the original implementation, the simulation lacked the
longest road and largest army special cards, which get awarded
to players who have the longest continuous sequence of roads
and the largest number of knight cards, respectively. Largest
army was relatively simple to implement as we already kept
track of the number of cards a player had, but longest road
required a new algorithmic solution that runs every turn. To
compute the longest road for a given player, we run a DFS
from every road vertex the player owns, and find the maximum
length path the DFS returns. We then compare the length of
the longest road of each player to determine who to give the
award to.

We also added visuals that allow us to keep track of player
resource counts, victory points, dev cards, and longest road
and largest army. Moreover, we made the board visuals scale
to screen size, so that the visuals remain consistent across
devices.

B. The Remuwork

To make it more adaptable to different agents all interacting
within the same board, the codebase was largely reworked to
directly integrate abstract agents within the gameplay loop.
With this addition, for every player’s turn, it repeatedly asks
the agent associated with that player what action it would
like the player to take. This happens until the agent runs
out of options or directly ends its turn. Through providing
an interface for methods that consume information like every
possible action that could be taken and output the agent’s
desired course of action, this laid the groundwork for adding
new agents that could interact with and be swapped with
each other. The rework also exposed certain structures and
information that helped with serialization and encoding, and
segmented different parts of the application into consolidated
packages. Finally, with 100% type-hinting coverage, the code
could be verified for correctness more easily and type-related
errors became less common. This also increased development
speed as intellisense systems could pick up on the structure
of the project and provide more informed suggestions.



C. Human Players

To provide another way to evaluate the effectiveness of our
agents, we added the ability for humans to also play the game.
This was tricky, as it involved a lot of Pygame manipulation
to handle player inputs and effectively identify the intended
action. For instance, we created functions for roads and road
vertices (the points between roads where settlements can be
placed) that computed the distance between a player’s cursor
to the road/road vertex visual representation.

Human players work as follows: they have a specific set
of actions they can take during the setup phase of the game
(placing their initial settlement and then an initial road). After
the setup phase, they can do the general game playing actions
like placing settlements, roads, and cities, buying dev cards,
and using dev cards, although the Monopoly and Knight dev
cards do not work as of now. Human players can also trade
with the harbor, but not with other agents, as the simulation
as a whole does not support trading with other players.

D. Encoding Game State

To record the current board state of the game, we had to
translate the hexagonal board in a standard game to fit into a
data type that can be easily read by our training model. This
was done following a brick representation layout, which was
established in Deep Catan [2]. Just as each hexagonal cell
makes contact with six others (assuming it is not on an edge),
each brick in the brick representation makes equal length
contact with six other bricks surrounding it. It is effectively a
vertically squashed representation, and its image-like structure
makes it perfect for passing into a convolutional network. This
is shown in Figure 2.

Fig. 2. Brick Representation

With this standard BrickRepresentation recorded, our com-
plete board state that is passed into the reinforcement learning
agent would have n+1 channels, where n is equal to the number
of players, and each channel contains a main copy of the
BrickRepresentation model. These channels are shwon on the
left side of Figure 3. The reason why we need a separate
channel for each player is to record that individual player’s
current settlement, road, and city spots on the board, where 0
represents nothing is owned from that player and any positive
number correlates to the player owning that spot. Stacking
all of this data together would easily allow the total board

state with n+1 channels, where 1 channel is dedicated to the
starting board information, to be passed into a convolutional
neural network that can process all the brick-based layers.

5 Channel
Board
Encoding

I- Player Resources

Player X, Dev Cards

Player X, Available Actions

Fig. 3. Board and Player State Encoding

When it comes to figuring out the best action to take and
how our model should be able to return that information, we
have to pass in a unique static action encoding scheme every
turn for all the available different action categories that the
agent can perform. In a standard normal game of Catan, every
player is allowed to perform any number of actions (given
the conditions are met) from the listed 7: end turn, build a
settlement, build a city, build a road, buy a development card,
use a development card, trade for resources. To pass this in
our model, we can use a simple array of size 7 with simple
Is and Os to represent which actions are valid at the start of
every turn for the reinforcement learning agent.

However, for our given model and in any standard game
of Catan, this action encoding alone is not sufficient to
fully define the action space for a player’s turn or for our
reinforcement learning (RL) agent to learn effectively. When
considering building actions, such as constructing a road,
simply marking the action as available with a 1 does not
convey the full extent of choices available to the player.
Instead, we must also encode the specific locations on the
board where these actions can be performed. This is where
all of these special actions have an additional copy of the
BrickRepresentation (which is our method of encoding the
board state) filled with 1s and Os that show all the valid
locations for these actions to be taken.

All building options have their own copy of BrickRepresen-
tation based on the aforementioned reason above. Trading also
requires their own board channel that records all the special
harbors that the player can trade on (i.e. 2:1 brick, 3:1) as well
as a separate array for the available resources that could trade
if they have the sufficient amount.

Development card usage also requires additional encoding
beyond a simple 1 or O in our action array. Cards such as
”Knight” (which moves the robber) and “Road Building”
(which allows placing two roads) requires further spatial
information rather than categorical inputs. For example, if
a player wishes to use the “Knight” card, the model must
receive a representation of all valid hexes where the robber
can be placed. This would be done as before by using the



same BrickRepresentation and setting all valid hexes to be 1s
for all tiles that do not currently have a robber on it.

Category Representation

[EndTurnAction

0/1 (Binary choice: 0 = Continue, 1 = End
Turn)

BuildSettlementAction, BuildCityAction,
BuildRoadAction

0/1 (Toggle if building), [BrickRepresentation
(0 = can't build, 1 = valid)]

-BuildSettlement(x, y)
-BuildCity(x, y)
-BuildRoad(x, y)

BuyDevelopmentCard 0/1 (Binary choice: 0 = Can’t buy, 1 = can

buy)

UseDevelopmentCard 0/1 (Binary choice: 0 = can't use, 1 = can
use), [BrickRepresentation (0 = can’t use on

spot, 1 = can use on spot)]

Trade Action 0/1 (initial trade) [0, O, 0, 0, 0] (list of
resources able to 4:1 trade),
[BrickRepresentation (positive numbers

represent valid harbor spot)]

Fig. 4. Action Encoding

In addition to this action space channel, we also pass an
additional n+1 channels for other static game information on
the board. N channels are dedicated to the current remaining
resources count of all the players in the game, including the
bot. These include the individual resources that the player
has (wood, brick, sheep, wheat ore); the remaining amount
of roads, settlements, and cities they can build; the amount of
victory points they currently have; if they have largest road and
army; the number of knights played; and the current length of
their longest road. The last channel is solely dedicated to the
bot’s currently held development cards (if any). Since we are
passing in a binary flag of 0/1 in UseDevelopmentCardAction,
we need to keep track of which development cards the bot
has and adjust for if they decide to play a development
card in that process. This is because a development card
like “Year of Plenty” would not need reference to its valid
BrickRepresentation rather than “Road Building” which needs
reference to this. That means for the entire player states
encoding, we pass a total of n+2 channels. These channels
are visible on the right side of Figure 3.

E. Reinforcement Learning Agent

Using these encodings our model processes the data in a
two part Deep Q-Neural Network as shown in Figure 5. The
first part, a convolutional neural network, performs convolu-
tions on the various brick based board encoding channels. A
convolutional model was selected for its ability to preserve
special hierarchies when processing data. The convolutional
neural network processes the board channel encoding in 3
convolutional layers outputting the data into a fully connected
layer. These layers are shown in Figure 6 This fully connected
layer is integrated with the other core part of our model, a
multilayer perceptron which processes the vector encoding of
the RL agent’s action space and resource information. This
MLP is connected to the fully connected layer of the Con-
volutional Neural Networks forming one final fully connected
deep neural network. With this the model is able to combine

the processed and weighted special hierarchies of the board
state with the vectorized encodings of the action spaces and
resource values. This final neural network outputs to seven
neurons corresponding to the seven types of potential actions
the model could take, being the ones mentioned in Figure 4.

Fig. 5. Neural Network Structure (not to scale)

The structure of the network is dependent on the number of
players, the size of the player state, and the size of the action
space. This analysis will assume a player count of 4 (used for
all our tests), a player state size of 1224, and an action space
size of 7.

With 4 players, there are 5 board channels (one for each
player plus the neutral information of the board). Each of these
channels has a height of 11 and a width of 21 (see the brick
representation described in Figure 2), for a total of 11 * 21 =
231 values per channel. These five channels get passed into a
convolutional neural network, each layer having a kernel size
of three, a stride of one, and a padding of one. The layout is
shown in Figure 6:

128@11x21

32@11x21

5@11x21

=

Fig. 6. CNN Layers

The player state-related values follow a different pipeline, as
they do not have the same spatial relations as the board does.
This consists of two fully-connected layers with the structure
shown in Figure 7.

After both of these aspects have been processed, they are
concatenated together and passed through one final fully-
connected layer and argmax is used to determine the bot’s
final action, as shown in Figure 8.

Through all these layers, the model is able to separate
the spatial components of the board and the independent
components of the player state, combining them together for
a final pass at the end to evaluate the agent’s action.



Oees OOOOO

Qe+ QOOO0O0O000000

1224

Input Layer € R Hidden Layer € R'?® Output Layer € R'2®

Fig. 7. Fully Connected NN Layers

29568 (board CNN) 128 (player FCNN)

N/

29696 (concatenated full state)

7

(action space)

argmax

Fig. 8. NN Concatenation

On any given turn when the RL agent is called to take
its turn, if first records a snapshot of the board states full
encoding. Then the model evaluates if it will be using heuristic
or its Deep Q network to decide its action based on its epsilon
weight. If the heuristic is not selected then the encoding is then
passed through the Deep Q Neural Network. This then outputs
logits or q values, corresponding to the 7 possible actions.
The max q value is then selected and the action said q value
corresponds to is then performed. The resulting board state is
then recorded and rewards are calculated based on the resulting
outcome of the action. These rewards are used to update the
weights of the Deep Q Network in back propagation.

We tuned the reward function multiple times but saw
the most success rewarding both victory points as well as
resources. Additionally we found that hyperparameter tuning
the reward values of specific resources produced better results.
In specific we found that increasing the reward for Ore and
Grain, two resources critical for creating towns, increased our
models’ win rate.

V. EVALUATION / RESULTS

For our evaluation, we performed multiple tests across
100 sample games. Each test used different distributions of
agents, those being the Random, Heuristic, and RL agents.
Simulations were done with 100 games unless otherwise noted.

For the first test, we found a benchmark by comparing a
full room of random bots against each other as a baseline.

Player Type | Wins
Random 1 27
Random 2 22
Random 3 23
Random 4 28

TABLE I
4 RANDOM WINS

As seen in Table I, the bots performed roughly the same,
and the average turn number in this experiment was 259.6
turns, showing that the games lasted much longer than the
previous number of 71 that was found from a group of average
players playing Catan in our proposal. This makes sense, as
the bots make completely nonsensical moves and do not take
into account anything in the position.

For our second test, we ran the heuristic bot against the
random bots to validate its capabilities. Through testing, we
found that it won the vast majority of games. When adding
two heuristic bots they both won much more than the random
bots.

Player Type | Wins
Random 1 1
Random 2 0
Random 3 0
Heuristic 99

TABLE II
3 RANDOM AND 1 HEURISTIC WINS

Player Type | Wins
Heuristic 1 74
Random 1
Random 2 1
Heuristic 2 23

TABLE III
2 RANDOM AND 2 HEURISTIC WINS

As seen above in Table II and Table III, the heuristic agents
consistently outperformed their opposition. An interesting fact
to note is that in the second table, we see that the first heuristic
bot won 3x more than the second. We believe this is due to the
first player starting advantage allowing them to get an early
lead that usually converted into a win.



The first simulation had an average turn number of 90.17,
and the second one had an average turn number of 113.73.
Although it may seem counter-intuitive for the game with two
heuristic bots to be longer, the competition between the two
likely dragged the game out as they moved to oppose each
other. When there was only one intelligent bot it is able to
obtain largest army and longest road uncontested, resulting in
faster victories.

Next, we tested the RL agent against the random bots to
provide a benchmark over the heuristic bot in terms of beating
opponents with random actions. Our main model we used for
testing had 75% usage of QNN, with the remaining 25% being
based on a heuristic. We found that it also performed quite well
against the random bot, showing that the training did not have
random results.

Player Type | Wins
Random 1 1
Random 2 0
Random 3 0
RL Agent 99

TABLE IV
3 RANDOM AND 1 RL AGENT WINS

Player Type | Wins
RL Agent 1 71
Random 1 1
Random 2 2
RL Agent 2 | 26

TABLE V
2 RANDOM AND 2 RL AGENT WINS

As seen above in Table IV, the RL agent performed sim-
ilarly to the heuristic bot, winning 99 out of the 100 games.
This simulation’s average number of turns as 100.41, which
was also much lower than the 4 random simulation, showing
that the RL agent quickly found a strategy to victory.

In Table V we also saw an emulation of the 2 Random/2
Heuristic experiment, where the first player won the majority,
with the second RL agent also performing admirably while
the randoms barely won any games. The average turn number
was 120.35, showing that competition also increased the turn
number.

Finally, we tested an RL agent against 3 opposing heuristic
bots. This was our main test to check its performance, as it
was against players that made reasonable choices.

As seen above, in the first experiment of 100 games in Table
VI the RL Agent performed admirably winning the majority of
the games when in the first position. The average turn number
was 88.38, showing that games progressed quickly despite the
constant back and forth of win conditions like largest army
and longest road.

Player Type | Wins
RL Agent 1 73
Heuristic 1 5
Heuristic 2 17
Heuristic 3 5

TABLE VI
3 HEURISTIC AND 1 RL AGENT WINS

Player Type | Wins
RL Agent 1 | 124
Heuristic 1 | 787

Heuristic 2 73
Heuristic 3 16

TABLE VII
3 HEURISTIC AND 1 RL AGENT WINS

However, in the second experiment of 1000 games in Table
VII we got significantly different results. In this one the RL
agent still won over 100 games, but the first heuristic bot swept
the competition with 787 wins, with an average turn number
of 124.50. Further testing must be done to find out details of
why this occurs, but it is safe to say that both the heuristic
and RL agents performed much better than our baseline of the
random bot, and both obtained significant wins in simulations
against the other, showing their competitiveness.

VI. CONCLUSIONS

Our efforts to create a bot that can play Settlers of Catan at
a level competitive with human players was mostly successful.
In the end, we managed to extend the original heuristic agent
and implement a reinforcement learning model, both of which
showed significant improvement over random choice. On top
of this, the structural requirements of having a functional Catan
simulator that is flexible enough to support human players and
multiple agent types was realized. This includes a game state
that automatically tracks and verifies the possible actions each
player can take, eliminating the class of illegal moves from
agents. Through all of these combined elements, we were able
to gather reasonable data that suggests considerable strength
in both models we developed.

Unfortunately, there were also a few features that we were
not able to implement. For example, trading between players
is not supported in any of the agents, as the social aspect
of proposing and confirming a trade proved too difficult to
feasibly implement into any of our structures. At a higher
level, this social aspect becomes more prominent, and as a
result our bot would likely struggle in such a setting. But in
more amateur scenarios, where trading between players can be
considered as more of an afterthought than a strategic force,
our approach would likely yield reasonable results.

As far as the reinforcement learning approach goes, we were
not able to beat the heuristic agent with the amount of training
we were doing and/or the model structure. Although it does



consistently outperform the random agent, showing that it has
learned a significant amount of material, its win rate drops
significantly when pitted up against a stronger opponent. More
training and hyper parameter tuning would likely improve
these results, but we were unfortunately not able to explore
these areas as thoroughly as we would have liked. Future
extensions of this project would likely prioritize those areas
of improvement.

(1]

(2]

[3]
(4]

REFERENCES

M. Pfeiffer, “Reinforcement learning of strategies for settlers of catan,”
in Proceedings of the International Conference on Computer Games:
Artificial Intelligence, Design and Education, 2004.

B. Driss and T. Cazenave, “Deep catan,” in International Conference
on the Applications of Evolutionary Computation (Part of EvoStar).
Springer, 2022, pp. 503-513.

B. Collazo, “Catanatron: A settlers of catan bot,” 2025, accessed:
2025-01-27. [Online]. Available: https://github.com/bcollazo/catanatron
P. Keep, “Settlers of catan analysis,” 2011, accessed: 2025-
01-27. [Online]. Available: https://developingcatan.wordpress.com/wp-
content/uploads/2011/02/settlers-of-catan-analysis.pdf



