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Introduction
Markov Chain Monte Carlo methods use Markov 

chains to sample from distributions. A Markov Chain is 
a model of a sequence of “states”, where the 
probability of being at a given state depends only on 
the state that came before it. Given enough time 
(known as the mixing time), Markov Chains converge, 
or “mix”, to a stationary distribution, or a distribution 
that the chain tends to stay at regardless of where it 
started from. 

Our project focuses on a particular Markov Chain 
Monte Carlo algorithm, with applications in statistical 
physics, known as hardcore model Glauber 
dynamics. The target distribution of Glauber 
dynamics is a distribution of all of the independent sets 
within a graph. An independent set is a set of 
vertices within a graph with no two vertices in the set 
containing an edge between them. 
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Research Questions
RQ1: Does the Glauber dynamics for sampling 
independent sets on trees mix in time O(nlogn)?
RQ2: If we bias the algorithm in favor of larger or smaller 
sets, how does the mixing time change?

Generally, Glauber dynamics does not mix fast. 
However, in trees, prior research has shown that it does. 
[1] Work done by Efthymiou, Hayes, Stefankovic, and 
Vigoda shows the optimal mixing time in trees of size n 
to be O(n^2), given a λ value of less than 1.1. 

The λ parameter gives more or less weight to different 
sizes of independent sets.

Experimental Design
Our experiment design consists of initially 

generating random trees of size n. Glauber dynamics 
can then be used as a way to approximately count the 
number of independent sets within each tree. This is 
accomplished by taking K samples of independent sets 
from the tree, except we remove at least one edge 
from the tree. We count the number of samples from 
this new tree that would have also been an 
independent set in the original tree, and then use the 
ratio between the two to compare against an exact 
counting algorithm implemented via dynamic 
programming. 

Preliminary Data
We implemented the experiments using C++ and the 
Boost Graph library, running each experiment on a 
laptop. We ran tests on trees of up to size 1000, trying 
different values of T, K, and the λ parameter. We 
found that the counter is more accurate (ratios being 
off by 0.01-0.1 factor on average) with T being above 
1000 and K being around 100, with the λ value being 
1. Lower values of all variables, both individually or 
together, resulted in a far less accurate 
approximation. This was an unexpected result, as we 
expected lower λ values to work better.

Next Steps
Our next steps involve running the algorithms on 
larger instances. This includes running the algorithm 
with larger values of T and K, in order to see more 
accurate results from the counter and gather more 
data for the mixing time of Glauber dynamics. 

There are other heuristics that we have not 
explored yet which may run faster, specifically 
coupling from the past.

Glauber Dynamics Pseudocode

The dynamic programming algorithm gives us the 
true number of independent sets in a tree, and gives 
us a way to approximate how well the Glauber 
dynamics counting algorithm works. 

In theory, given enough time and a sufficient number 
of samples, the Glauber dynamics algorithm will be 
reasonably accurate. By seeing what values of T and K 
give us a more accurate estimate, we can measure the 
mixing time of Glauber dynamics.
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